
Specification for intuitive BEC

1 Introduction
The current approach to compute bilateral exchanges could result in non-intuitive bilateral

exchanges, even when FBMC is run in FB “intuitive” mode. Since such results might appear

inconsistent with the project’s choice to go live in FB “intuitive” mode, it was decided to issue this

change, to retrieve BECs that are intuitive too.

2 BEC requirement
Input

Input for the BEC calculation are the 4 CWE net positions (nexz) and the 4 CWE market clearing

prices (mcpz)

Output

The 8 directional CWE bilateral exchanges

Method

STEP1 – guaranteeing the net positions sum to zero

The balance constraint is not necessarily respected by the input data. This can be restored by

applying the method described in section 3.

STEP2 – deriving bilateral exchanges

We define:

4

2
*

FRNLBE
nexnexnex

x

And we derive a lower bound LB and an upper bound UB as follows:

LB = -∞

UB = ∞

LB:= max(LB, 0) If
BEFR

mcpmcp

LB:= max(LB,-nexBE) If
NLBE

mcpmcp

LB:= max(LB,-nexBE-nexNL) If
DENL

mcpmcp

LB:= max(LB,nexFR) If
FRDE

mcpmcp

UB:= min(UB, 0) If
BEFR

mcpmcp

UB:= min(UB,-nexBE) If
NLBE

mcpmcp

UB:= min(UB,-nexBE-nexNL) If
DENL

mcpmcp

UB:= min(UB,nexFR) If
FRDE

mcpmcp

We start this process using ԑ=0.005€. If LB > UB the process is rerun, now using ԑ=0.025€.

We now set the optimal x* to:

if LB < UB {

 if x* < LB {x*←LB};

 if x* > UB {x*←UB};

} else {

 //stick with the initial x*, since it is not going to intuitive

 //anyway

}

The results bilateral exchanges become:

FR→BE:= max(x*, 0);

BE→FR:= max(-x*, 0);

BE→NL:= max(nexBE+x*, 0);

NL→BE:= max(-nexBE–x*, 0);

NL→DE:= max(nexBE+nexNL+x*, 0);

DE→NL:= max(-nexBE-nexNL-x*, 0);

DE→FR:= max(-nexFR+x*, 0);

FR→DE:= max(nexFR-x*, 0);

The justification for the perhaps rather abstract text in this section is provided in section 4.

3 Annex – restoring balance constraint
Due to rounding it is possible that the BEC calculation is provided with a series of net positions that

do not sum to zero. Since deriving net positions from bilateral exchanges by definition result in a

fully balanced system, it is important to restore the balance condition prior to deriving the

corresponding exchanges.

The imbalance can be written as:
Zz

z
nex

To restore balance, we adjust net positions in the direction of zero.

We define ordered sets:

 0|

0|

z

z

nexZzZ

nexZzZ

where elements are ordered according to descending |nexz|.

We define Qtick as the smallest nomination tick (e.g. 0.1MWh). Since Δ resulted from rounding, it by

definition should correspond to a multiple of this nomination tick. We adjust net positions as follows

(in pseudo code):

if Δ>0:

while (Δ>0) {

 for (zϵZ
+
){

 if (nexz>0) {

 nexz←nexz-Qtick

 Δ←Δ-Qtick

 }

 }

}

if Δ<0:

while (Δ<0) {

 for (zϵZ
+
){

 if (nexz<0) {

 nexz←nexz+Qtick

 Δ←Δ+Qtick

 }

 }

}

Note that the iterative fashion of the pseudo code is unnecessarily laborious, but this highlights that

a net position should not be reduced past zero. More efficient implementations exist.

4 Annex – deriving bilateral exchanges
If we consider the CWE topology, it is clear that once the welfare maximizing net positions are

known, the corresponding bilateral exchanges are not uniquely determined: for any set of bilateral

exchanges, we can add an amount x to all exchanges, which is send in a loop, and consequently does

not alter the net positions. I.e. any value of x gives another valid set of bilateral exchanges; hence

the bilateral exchanges are not uniquely determined.

In the figure below we describe the bilateral exchanges by arbitrarily assign a value x to BE→FR.

With BE→FR fixed, the other bilateral exchanges follow from the net positions:

Proposal unique solution I

If we fix x to a certain value, we have a unique set of bilateral exchanges. We propose to fix x, such

that the sum of the squared bilateral exchanges is minimized. We can write the sum of the squared

exchanges = f(x) as:

2222

22

222222

2222

222244

2

2222

)(

FRNLNLBEBEFRNLBE

FRFR

NLBENLBENLBEBEBE

FRNLBEBE

nexnexnexnexnexxnexnexnexx

nexxnexx

nexnexnexnexxnexxnexxnexxnexxx

xnexxnexnexxnexxxf

For this sum to be minimized, we need:

4

2
*

22480

FRNLBE

FRNLBE

nexnexnex
x

nexnexnexx
x

f

Proposal unique solution II

The first solution does not consider any intuitive relation, i.e. the desire to find bilateral exchanges

that go from a low priced area to a high priced area. Under FB “intuitive” we know such exchanges

should exist. We derive the conditions that should be respected for a solution to be intuitive:

NL

BE FR

DE

x

nexBE+x -nexFR+x

nexBE+nexNL+x

Imagine mcpFR < mcpBE. For a solution to be intuitive we need FR→BE ≥ 0, or x≥0. Conversely if mcpFR

> mcpBE we need x≤0. If we apply this logic on all 4 CWE exchanges we get:

FRDEFR

FRDEFR

DENLNLBE

DENLNLBE

NLBEBE

NLBEBE

BEFR

BEFR

mcpmcpnexx

mcpmcpnexx
FRDE

mcpmcpnexnexx

mcpmcpnexnexx
DENL

mcpmcpnexx

mcpmcpnexx
NLBE

mcpmcpx

mcpmcpx
BEFR

if

if
:

if

if
:

if

if
:

if0

if0
:

Note we used a tolerance ԑ to account for the direction of the prices. Depending on the direction of

the prices we establish different lower and upper bounds for x: LB ≤ x ≤ UB. If LB > UB no such x

exists (or the tolerance was too tight), and the solution cannot be intuitive. If LB < UB, we select x

according to:

If LB < x* < UB OR LB > UB1 x=x*

If x* < LB x= LB;

If x* > UB x=UB;

Where x* is the solution from I.

1
 Note that since we allow LB > UB, i.e. non-intuitive solution, this approach of computing BECs should also

work when switching back to FB “plain” allocation.

